
Going All-in on
Gateway API

Replacing Ingresses and Enhancing a 
Service Mesh



Who am I?

● 20+ years working in IT
● Largely focused on systems administration and devops
● Administered & used GKE in production for ~4 years
● Have also done most other things too
● I’m all about using the right tool for the job at hand

Mastodon: @genebean@fosstodon.org

GitHub: https://github.com/genebean 

LinkedIn: https://www.linkedin.com/in/geneliverman/ 

https://fosstodon.org/@genebean
https://github.com/genebean
https://www.linkedin.com/in/geneliverman/


Origin of this talk 

● Heard about Gateway API at SCaLE 20x (or maybe 21x)
● Started a greenfield project at work
● Project results will hang around a long time… 

○ let’s be as up-to-date as possible
○ let’s not carry known pain points forward into this project

● Wow… documentation is hard to find on the new stuff



But things didn’t go as planned…



Before we talk about Gateway API…



Why not just use the Ingress resource?

“The main limitation of Ingress is that it only works at Layer 7, specifically 
optimizing for HTTP and HTTPS traffic. Other L7 protocols (like gRPC) and non-

L7 protocols (like TCP and UDP) must be handled using custom controller 
extensions rather than native Ingress capabilities.”

konghq.com/blog/engineering/gateway-api-vs-ingress 

https://konghq.com/blog/engineering/gateway-api-vs-ingress


Why not just use the Ingress resource?

● gRPC support was needed
● TCP & UDP traffic
● Progressive rollouts a la Argo Rollouts
● Service mesh integration for observability



Gateway API



Why Gateway API?

“Overall, Gateways define a whole new way of declaring and managing traffic 
targeting Kubernetes services that avoids the limitations teams experience using 

only Ingress resources. The Gateway API creates a standardized model for 
enabling features like L4 support, advanced HTTP routing, and built-in traffic 

management in a portable fashion across all compliant gateway controllers. This 
will prevent vendor lock-in and give developers expanded declarative 

management without having to touch low-level controller configurations.”

konghq.com/blog/engineering/gateway-api-vs-ingress 

https://konghq.com/blog/engineering/gateway-api-vs-ingress


Why Gateway API?

“It’s important to note that Ingress is 
now frozen, and all new features are 
being added to the Gateway API going 
forward.”

konghq.com/blog/engineering/gateway
-api-vs-ingress 

https://konghq.com/blog/engineering/gateway-api-vs-ingress
https://konghq.com/blog/engineering/gateway-api-vs-ingress


The Plan



Components

● Traefik for north/south traffic instead of Ingress resources
● Linkerd for east/west traffic traversing the service mesh
● Argo Rollouts for progressive delivery / safer deployments



North/South traffic

Traffic from outside a cluster to inside a cluster (and vice versa).

gateway-api.sigs.k8s.io/concepts/glossary#northsouth-traffic

Put another way, traffic from users of the things running inside the cluster and 
traffic from your cluster to external systems and services 

https://gateway-api.sigs.k8s.io/concepts/glossary#northsouth-traffic


East/West traffic

Traffic from workload to workload within a cluster.

gateway-api.sigs.k8s.io/concepts/glossary/#eastwest-traffic

Put another way, traffic between program A and program B or between pods 
within the same application stack

https://gateway-api.sigs.k8s.io/concepts/glossary/#eastwest-traffic


Safer deployment because of Argo Rollouts?

● Deploy (roll out) applications to a subset of users, say 1% of traffic
● Roll out new versions a little at a time
● Halt, and even revert, rollout if metrics go sideways… automatically!

argoproj.github.io/rollouts 

https://argoproj.github.io/rollouts


Why Traefik?

Simple: it seemed to be ubiquitous in all conversations, podcasts, presentations, 
and blog posts about Kubernetes and/or Docker

Also, fully supports Gateway API



Why Linkerd?

● Super lightweight
● Purpose built to just be a service mesh
● Really fast

○ livewyer.io/blog/service-meshes-decoded-istio-vs-linkerd-vs-cilium/ 

https://livewyer.io/blog/service-meshes-decoded-istio-vs-linkerd-vs-cilium/


Introducing Gateway API



Resource Model

The overall resource model focuses 
on 3 separate personas and 
corresponding resources that they are 
expected to manage

https://gateway-api.sigs.k8s.io/concept
s/roles-and-personas/ 

https://gateway-api.sigs.k8s.io/concepts/roles-and-personas/
https://gateway-api.sigs.k8s.io/concepts/roles-and-personas/


Sample GatewayClass
apiVersion: gateway.networking.k8s.io/v1

kind: GatewayClass

metadata:

  name: traefik-v3

spec:

  controllerName: traefik.io/gateway-controller

“GatewayClasses formalize types 
of load balancing implementations. 
These classes make it easy and 
explicit for users to understand 
what kind of capabilities are 
available via the Kubernetes 
resource model.”

gateway-api.sigs.k8s.io 

https://gateway-api.sigs.k8s.io/


Sample Gateway
apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

  name: argocd-server-gateway

  annotations:

cert-manager.io/cluster-issuer: "le[…]"

spec:

  gatewayClassName: traefik-v3

  listeners:

[ … see next slide … ]

“A Gateway describes how traffic can be translated 
to Services within the cluster. That is, it defines a 
request for a way to translate traffic from 
somewhere that does not know about Kubernetes to 
somewhere that does.”

“It defines a request for a specific load balancer 
config that implements the GatewayClass’ 
configuration and behaviour contract. The resource 
may be created by an operator directly, or may be 
created by a controller handling a GatewayClass.”

gateway-api.sigs.k8s.io/concepts/api-overview/#gat
eway 

https://gateway-api.sigs.k8s.io/concepts/api-overview/#gateway
https://gateway-api.sigs.k8s.io/concepts/api-overview/#gateway


Sample Gateway listeners block
  listeners:

- name: http

    protocol: HTTP

    port: 80

    allowedRoutes:

        namespaces:

        from: Same

- name: https

    protocol: HTTPS

    port: 443

    hostname: {{ .Values.hostname }}

    allowedRoutes:

        namespaces:

        from: Same

    tls:

        mode: Terminate

        certificateRefs:

        - name: argocd-server-tls



Routes

“Gateway API supports typed Route resources and also different types of 
backends. This allows the API to be flexible in supporting various protocols (like 
HTTP and gRPC) and various backend targets (like Kubernetes Services, 
storage buckets, or functions).”

gateway-api.sigs.k8s.io/#gateway-api-concepts 

https://gateway-api.sigs.k8s.io/#gateway-api-concepts


Sample HTTPRoute: HTTP → HTTPS redirect
apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute

metadata:

  name: argocd-server-http

spec:

  hostnames:

    - {{ .Values.hostname }}

  parentRefs:

    - name: argocd-server-gateway

  sectionName: http

  kind: Gateway

  rules:

    - filters:

      - type: RequestRedirect

        requestRedirect:

          scheme: https



Sample HTTPRoute: HTTPS
apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute

metadata:

  name: argocd-server-https

spec:

  hostnames:

    - {{ .Values.hostname }}

  parentRefs:

    - name: argocd-server-gateway

  sectionName: https

  kind: Gateway

  rules:

    - backendRefs:

      - name: argocd-server

          port: 80

      matches:

        - path:

            type: PathPrefix

            value: /



Service Mesh Variation
spec:

  parentRefs:

    - name: some-http-service

      kind: Service

      group: core

      port: 
{{ .Values.collector.service.apiPort }}

  rules:

    - backendRefs:

        - name: some-http-service

          kind: Service

         group: core

         port: 
{{ .Values.collector.service.apiPort }}

         weight: 100

spec:

  parentRefs:

    - name: some-grpc-service

      kind: Service

      group: core

      port: 
{{ .Values.collector.service.grpcPort }}

  rules:

    - backendRefs:

        - name: some-grpc-service

          kind: Service

          group: core

         port: 
{{ .Values.collector.service.grpcPort }}

         weight: 100



Challenges along the way



Not everything is rosy

● Gateway API is not in tree with k8s so you have to manage CRDs
○ Easy enough with Argo CD

● Linkerd doesn’t support GRPCRoute v1 because of cloud providers
○ #13032 [Gateway API] Support for GRPCRoute v1 (stable channel)

● Getting Traefik to make CRDs optional was challenging:
○ #1209 Don’t bundle Gateway API CRDs
○ #1223 feat(Chart):  add optional separated chart for CRDs📦

● Gateway API v1.1.1 - fixed GRPCRoute with help from Flynn from Linkerd
○ “It’s issue 3411. Its original PR was PR 3412, which has been merged. PR 3419 is next in 

line (the changelog for the 1.1.1 release); I think that’s the last PR before release.”

○ https://github.com/kubernetes-sigs/gateway-api/releases/tag/v1.1.1 

https://github.com/linkerd/linkerd2/issues/13032
https://github.com/traefik/traefik-helm-chart/issues/1209
https://github.com/traefik/traefik-helm-chart/pull/1223
https://github.com/kubernetes-sigs/gateway-api/issues/3411
https://github.com/kubernetes-sigs/gateway-api/pull/3412
https://github.com/kubernetes-sigs/gateway-api/pull/3419
https://github.com/kubernetes-sigs/gateway-api/releases/tag/v1.1.1


Even with challenges, still worth it.



Why is it worth it?

● Easier to reason about
● More flexible
● Provides better visibility



Questions?


	Slide 1
	Who am I?
	Origin of this talk
	But things didn’t go as planned…
	Before we talk about Gateway API…
	Why not just use the Ingress resource?
	Why not just use the Ingress resource?
	Gateway API
	Why Gateway API?
	Why Gateway API?
	The Plan
	Components
	North/South traffic
	East/West traffic
	Safer deployment because of Argo Rollouts?
	Why Traefik?
	Why Linkerd?
	Introducing Gateway API
	Resource Model
	Sample GatewayClass
	Sample Gateway
	Sample Gateway listeners block
	Routes
	Sample HTTPRoute: HTTP → HTTPS redirect
	Sample HTTPRoute: HTTPS
	Service Mesh Variation
	Challenges along the way
	Not everything is rosy
	Even with challenges, still worth it.
	Why is it worth it?
	Questions?

